MAT 2379-Spring 2011
 Assignment 2 : Solutions

3.27 (5 points) This question deals with the binomial distribution with
parameters $n=4, p=0.42 \quad$ (a) $P(Y=0)={ }_{4} C_{0}(0.42)^{0}(1-0.42)^{4}=0.1132$
(b) $P(Y=1)={ }_{4} C_{1}(0.42)^{1}(1-0.42)^{3}=0.3278$
(c) $P(Y=2)={ }_{4} C_{2}(0.42)^{2}(1-0.42)^{2}=0.3560$
(d) $P(0 \leq Y \leq 2)=P(Y=0)+P(Y=1)+P(Y=2)=0.7970$
(e) $P(0<Y \leq 2)=P(Y=1)+P(Y=2)=0.6838$
3.28 (4 points) This question deals with the binomial distribution with parameters $n=20, p=0.90$
(a) $P(Y=20)={ }_{20} C_{20}(0.90)^{20}(1-0.90)^{0}=0.1216$
(b) $P(Y=19)={ }_{20} C_{19}(0.90)^{19}(1-0.90)^{1}=0.2702$
(c) $P(Y=18)={ }_{20} C_{18}(0.90)^{18}(1-0.90)^{2}=0.2852$
(d) 90% of 20 is 18 . Hence the probability as in (d) is 0.2852
3.31 (4 points)

On average there are 105 males to every 100 females. Hence, $P($ male $)=\frac{105}{205}$ and $p=P($ female $)=\frac{100}{205}$. We use the binomial with $n=4$ and where we identify "success" as "female".
(a) $P(Y=2)={ }_{4} C_{2}\left(\frac{100}{205}\right)^{2}\left(1-\frac{100}{205}\right)^{2}=0.3746$
(b) $P(Y=0)={ }_{4} C_{0}\left(\frac{100}{205}\right)^{0}\left(1-\frac{100}{205}\right)^{4}=0.0688$
(c) We can have either 4 females or 4 males. Hence, we need $P(Y=0)+P(Y=4)$.
$P(Y=4)={ }_{4} C_{4}\left(\frac{100}{205}\right)^{4}\left(1-\frac{100}{205}\right)^{0}=0.0566$. Therefore,
$P(Y=0)+P(Y=4)=0.0688+0.0566=0.1254$
3.39 (2 points)

We read from the table
(a) $P(Y=1)=36 / 100=0.36 ;(b) P(Y \geq 2)=\frac{14+4+1}{100}=\frac{19}{100}=0.19$
3.42 (3 point) This question deals with the binomial distribution with parameters $n=5, p=0.50$
(a) ${ }_{5} C_{2}(0.50)^{2}(1-0.50)^{3}=0.3125$
(b)

$$
\begin{aligned}
P(Y \geq 3) & =P(Y=3)+P(Y=4)+P(Y=5) \\
& ={ }_{5} C_{3}(0.50)^{3}(1-0.50)^{2}+{ }_{5} C_{4}(0.50)^{4}(1-0.50)^{1}+ \\
{ }_{5} C_{5}(0.50)^{5}(1-0.50)^{0} & =0.5
\end{aligned}
$$

3.46 (3 points)We read from the graph
(a) $P(120<Y<160)=0.41+0.25=0.66$
(b) $P(Y<120)=0.01+0.20=0.21$
(c) $P(Y>140)=0.25+0.09+0.04=0.38$

Total $=21$ points

